MODULO 5 COMPORTAMIENTO ELÁTICO E INELÁSTICO ORDINARIO

TE INVITO A QUE REVISES LOS SIGUIENTES VIDEOS.


Ensayos de Tracción

http://www.youtube.com/watch?v=LRFdKHhHHgU&NR=1
http://www.youtube.com/watch?v=pTCJGuxFGbc
http://www.youtube.com/watch?v=ktAi5jiyvPg&NR=1
http://www.youtube.com/watch?v=dmc3UXU7PAE


Ensayos de Compresión

http://www.youtube.com/watch?v=Q9nTcjdu5ac&NR=1
http://www.youtube.com/watch?v=jnbqx6I266k&feature=related


Ensayos de Torsión

http://www.youtube.com/watch?v=G5wNVol4HZU
http://www.youtube.com/watch?v=N0er504EFMQ&NR=1


Ensayos de Flexión

http://www.youtube.com/watch?v=GC9tmHtxBiY&NR=1
http://www.youtube.com/watch?v=1qT9Ho4g4Bs&NR=1


Pruebas de Dureza

http://www.youtube.com/watch?v=4PtkjRwIdN4&feature=related
http://www.youtube.com/watch?v=bjzIxeBRozE&feature=related
http://www.youtube.com/watch?v=6R-6UCgHhwM&feature=related

l.- Introducción

El ensayo de dureza es, juntamente con el de tracción, uno de los más empleados en la selección y control de calidad de los metales. Intrínsecamente la dureza es una condición de la superficie del material y no representa ninguna propiedad fundamental de la materia. Se evalúa convencionalmente por dos procedimientos. El más usado en metales es la resistencia a la penetración de una herramienta de determinada geometría.

El ensayo de dureza es simple, de alto rendimiento ya que no destruye la muestra y particularmente útil para evaluar propiedades de los diferentes componentes microestructurales del material.

Los métodos existentes para la medición de la dureza se distinguen básicamente por la forma de la herramienta empleada (penetrador), por las condiciones de aplicación de la carga y por la propia forma de calcular (definir) la dureza. La elección del método para determinar la dureza depende de factores tales como tipo, dimensiones de la muestra y espesor de la misma.

2.- Dureza Vickers

Este método es muy difundido ya que permite medir dureza en prácticamente todos los materiales metálicos independientemente del estado en que se encuentren y de su espesor.

El procedimiento emplea un penetrador de diamante en forma de pirámide de base cuadrada. Tal penetrador es aplicado perpendicularmente a la superficie cuya dureza se desea medir, bajo la acción de una carga P. Esta carga es mantenida durante un cierto tiempo, después del cual es retirada y medida la diagonal d de la impresión que quedó sobre la superficie de la muestra (figura 1). Con este valor y utilizando tablas apropiadas se puede obtener la dureza Vickers, que es caracterizada por HV y definida como la relación entre la carga aplicada (expresada en Kgf) y el área de la superficie lateral de la impresión

3.- Dureza Rockwell

La medición de dureza por el método Rockwell ganó amplia aceptación en razón de la facilidad de realización y el pequeño tamaño de la impresión producida durante el ensayo.

El método se basa en la medición de la profundidad de penetración de una determinada herramienta bajo la acción de una carga prefijada.

El número de dureza Rockwell (HR) se mide en unidades convencionales y es igual al tamaño de la penetración sobre cargas determinadas. El método puede utilizar diferentes penetradores siendo éstos esferas de acero templado de diferentes diámetros o conos de diamante. Una determinada combinación constituye una "escala de medición", caracterizada como A,B,C, etc. y siendo la dureza un número arbitrario será necesario indicar en que escala fue obtenida (HRA, HRB, HRC, etc.).

El proceso de medición con penetrador de diamante (utilizado para materiales duros, como por ejemplo los templados) está

La carga total P es aplicada sobre el penetrador en dos etapas: una previa Po y una posterior P1 tal que:

P= Po+P1

Inicialmente el cono penetra en la superficie una cantidad h0 sobre la acción de la carga P0 que se mantendrá hasta el fin del ensayo. Esta penetración inicial permite eliminar la influencia de las condiciones superficiales.

A continuación se aplica la carga P1 y la penetración se acentúa. Finalmente la carga Pl es retirada y la profundidad h restante (solamente actúa P0) determina el número de dureza HR. La escala de los instrumentos de lectura empleados en las máquinas está invertida para permitir una lectura directa.

En los certificados de calidad es común utilizar la escala HRB donde el cono de diamante es reemplazado por una esfera de 1/16" y la carga P1 vale 100 Kgf.

En casos de materiales muy finos donde la carga de 100 Kgf es muy elevada, pudiendo inclusive perforar la muestra, es utilizada la escala Vickers con una carga de 10 Kgf y luego efectuada la transformación a la escala HRB utilizando tablas de conversión adecuadas.

Un texto excelente sobre ensayo de materiales se puede encontrar en este link, perteneciente a la Facultad Regional Rio Grande de la Universidad Tecnológica Nacional


COMPORTAMIENTO ELÁSTICO E INELÁSTICO DE LOS MATERIALES

Deformación implica cambio de volumen y/o de forma de un cuerpo.
Esfuerzo y Deformación (stress) es la cantidad de fuerza que actúa sobre una unidad de área.
Los esfuerzos pueden ser originados por diversas causas:
Presión confinante, compresión, torsión.
En física, la ley de elasticidad de Hooke o ley de Hooke, originalmente formulada para casos de estiramiento longitudinal, establece que la deformación ε de un material elástico es directamente proporcional a la fuerza aplicada F:

Donde ΔL: alargamiento longitudinal, L: Longitud original, E: módulo de Young o módulo de elasticidad, A sección transversal de la pieza estirada. La ley se aplica a materiales elásticos hasta un límite denominado límite de elasticidad.

Ley de Hooke en sólidos elásticos
En la mecánica de sólidos deformables elásticos la distribución de tensiones es mucho más complicada que en un resorte o una barra estirada sólo según su eje. La deformación en el caso más general necesita ser descrita mediante un tensor de deformaciones mientras que los esfuerzos internos en el material necesitan se representados por un tensor de tensiones. Estos dos tensores están relacionados por ecuaciones lineales conocidas por ecuaciones de Hooke generalizadas o ecuaciones de Lamé-Hooke, que son las ecuaciones constitutivas que caracterizan el comportamiento de un sólido elástico lineal.

Cuando se selecciona un material para construir un edificio o una máquina, es necesario conocer sus propiedades mecánicas, así como su capacidad para soportar esfuerzos. Las propiedades mecánicas de los materiales se determinan en diferentes pruebas de laboratorio entre las que podemos mencionar: la dureza, la maleabilidad, la ductibilidad. La capacidad de los materiales para soportar esfuerzos se obtiene en pruebas o ensayos en las que se les aplican cargas (tensión, compresión, torsión) y se observa su comportamiento.
El diagrama que representa la relación entre esfuerzo y deformación en un material dado es una característica importante del material. Para obtener el diagrama esfuerzo - deformación de un material, se realiza usualmente una prueba de tensión a una probeta del material. En la figura 1 se muestra uno de los tipos de probeta que se utilizan. El área de la sección transversal de la parte cilíndrica central de la probeta ha sido determinada exactamente y dos marcas se han inscrito en esa porción a una distancia Lo. La distancia Lo es conocida como la longitud base de la probeta.

La probeta se coloca en la máquina de prueba que se usa para aplicar la carga central P. Al aumentar P, la distancia L entre las dos marcas se incrementa (véase la figura 2). La distancia L puede medirse con el instrumento mostrado y la elongación d = L - Lo se registra para cada valor de P. Un segundo medidor se usa frecuentemente para medir y registrar el cambio en el diámetro de la probeta. De cada par de lecturas P y d, se calcula el esfuerzo dividiendo a P por el área de la sección transversal inicial Ao de la muestra, y la deformación e dividiendo el alargamiento d por la distancia original Lo entre las dos marcas mencionadas. El diagrama esfuerzo - deformación se obtiene tomando e como abscisa s como ordenada.
Los diagramas esfuerzo - deformación para diferentes materiales varían considerablemente, y diferentes pruebas de tensión del mismo material pueden producir diferentes resultados, dependiendo de la temperatura de la muestra y de la rapidez de aplicación de la carga. Sin embargo, es posible distinguir algunas características comunes entre los diagramas esfuerzo - deformación de varios grupos de materiales y dividirlos en dos amplias categorías sobre la base de estas características. Materiales dúctiles y materiales frágiles.
Los materiales dúctiles, que comprenden el acero estructural y muchas aleaciones de otros materiales, se caracterizan por su capacidad para fluir a temperaturas normales. Cuando se somete la probeta a carga creciente, su longitud aumenta primero linealmente con la carga ya una tasa muy lenta. Así, la porción inicial del diagrama esfuerzo - deformación es una línea recta con una pendiente pronunciada. Sin embargo, después de que se alcanza un valor crítico del esfuerzo, la probeta sufre grandes deformaciones con un pequeño aumento de la carga aplicada. Esta deformación ocurre por deslizamiento del material en superficies oblicuas y se debe principalmente a esfuerzos cortantes.

En los diagramas esfuerzo - deformación de dos materiales dúctil es típicos, el alargamiento de la probeta después de empezar a fluir puede ser 200 veces su alargamiento antes de fluir. Después de alcanzar determinado valor máximo de carga, el diámetro de una porción de la probeta empieza a disminuir debido a la inestabilidad local. Esté fenómeno se conoce como estricción. Cuando la estricción se ha iniciado, cargas más pequeñas son suficientes para mantener a la muestra alargándose aún más, hasta que finalmente se rompe. La ruptura ocurre a la largo de una superficie cónica que forma un ángulo de 45° con la superficie original de la probeta. Esto indica que los esfuerzos cortantes son los principales causantes de la falla de materiales dúctiles y confirma el hecho de que, bajo carga axial, los esfuerzos cortantes son máximos en superficies que forman ángulos de 45° con la carga .El esfuerzo sY cual se inicia la fluencia es llamado resistencia a la fluencia del material, el esfuerzo sU que corresponde a la carga máxima aplicada a la probeta es la resistencia última y el esfuerzo sB, correspondiente a la ruptura, es la resistencia a la ruptura.

Los materiales frágiles como fundición, cristal y la piedra se caracterizan porque la ruptura ocurre sin que se presente antes un cambio importante en la tasa de alargamiento. Así, para materiales frágiles no hay diferencia entre resistencia última y resistencia a la ruptura. También, la deformación en el momento de la ruptura es mucho más pequeña para materiales frágiles que para materiales dúctiles. No se presenta estricción en la probeta en el caso de un material frágil y se observa que la ruptura ocurre en una superficie perpendicular a la carga. Se concluye de esta observación que los esfuerzos normales son los principales causantes de la falla de los materiales quebradizos. Se supone que las pruebas de tensión descritas en esta sección se ejecutan a temperaturas normales. Sin embargo, un material dúctil a temperaturas normales puede presentar las características de un material frágil, a temperaturas muy bajas, mientras que un material normalmente frágil puede comportarse como dúctil a muy altas temperaturas. A temperaturas distintas de las normales uno debe referirse a materiales en estado dúctil o en estado frágil y no, a materiales dúctiles o frágiles.

Los diagramas esfuerzo - deformación muestran que el acero estructural y el aluminio, que son dúctiles, tienen diferentes características de fluencia. En el caso del acero estructural, los esfuerzos permanecen constantes en un rango amplio de valores de la deformación, después de la aparición de la fluencia. Después, se debe incrementar el esfuerzo para que la probeta continúe alargándose, hasta que se llegue al valor máximo sU. Esto se debe a la propiedad del material llamada endurecimiento por deformación. La resistencia a la fluencia del acero estructural puede determinarse durante la prueba de tensión, observando el indicador de carga. Después de aumentar continuamente la carga, se observa que cae súbitamente a un valor ligeramente inferior que se mantiene por algún tiempo mientras la probeta sigue alargándose. En un ensayo bien efectuado uno puede distinguir entre el punto de fluencia que corresponde a la carga alcanzada, justo antes de que empiece la fluencia, y el punto de fluencia más bajo que corresponde a la carga requerida para mantener la fluencia. Como el punto de fluencia superior es transitorio, debe usarse el punto de fluencia inferior para determinar la resistencia a la fluencia del material.

DUREZA:
Por lo regular se obtiene por medio del método denominado resistencia a la penetración, la cual consiste en medir la marca producida por un penetrador con características perfectamente definidas y una carga también definida; entre más profunda es la marca generada por el penetrador de menor dureza es el material. Existen varias escalas de dureza, estas dependen del tipo de penetradores que se utilizan y las normas que se apliquen. Las principales pruebas de dureza son Rockwell, Brinell y Vickers.
Las dos primeras utilizan penetradores con cargas para generar marcas en los metales a probar, posteriormente se mide la profundidad de las marcas. En algunas publicaciones se considera a la prueba Rockwell como la prueba del sistema inglés y a la Brinell como la del sistema métrico. (observe las tablas de relación de durezas). La dureza Vickers se logra por medio de una prueba denominada el métodos Escleroscópico Shore en el que consiste en dejar caer un martinete de diamante de 2,3 g, sobre el material a probar y medir la altura del rebote. A mayor rebote mayor será su dureza.